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Forecasting chaotic time series with genetic algorithms

George G. Szpiro*
The Israeli Center for Academic Studies, Kiriat Ono 55000, Israel

~Received 25 January 1996; revised manuscript received 16 October 1996!

This paper proposes the use of genetic algorithms—search procedures, modeled on the Darwinian theories of
natural selection and survival of the fittest—to find equations that describe the behavior of a time series. The
method permits global forecasts of such series. Very little data are sufficient to utilize the method and, as a
byproduct, these algorithms sometimes indicate the functional form of the dynamic that underlies the data. The
algorithms are tested with clean as well as with noisy chaotic data, and with the sunspot series.
@S1063-651X~97!12403-5#

PACS number~s!: 02.50.2r, 02.60.Gf, 96.60.Qc
fte
h
u

d
is
f
a

ti
ca
-
th

n
ie
, b
s

o
a
s
ie

r i
t

n
l-
u
st
d
a

ith
ce,
rent
ual
e the
are
all

ech-
ore-
rest
s
ts

bor
ta
en-
are
use
fine
ting
re
obal
tice
let
se-
its
ave-

bor-
It
nd-
of
e
arch
ua-

to
ap-
go-
to
lgo-

ge-
l.
I. INTRODUCTION

Whether the data of a time series,$x1 ,x2 ,x3 ,...,xT% were
created by a deterministic or by a random process is o
decided indirectly, by estimating the fractal dimension of t
time series in successively higher embedding dimensions
ing, for example, the Grassberger-Procaccia@1,2# algorithm.
If the dimension estimates converge as the embedding
mension increases it may be concluded that a determin
dynamic underlies the time series.~Significant drawbacks o
this method are, however, that massive amounts of data
needed and that it depends on the visual inspection
graphs.! Another tool for the assessment of the determinis
origin of a time series consists, for example, in the appli
tion of noise-reduction methods@3#, which attempt to ascer
tain the deterministic origin of the data by measuring
level of noise in the series@4#. Once it is established with a
sufficient level of confidence that the series has been ge
ated by a deterministic process, prediction of the time ser
future behavior, based on its past values, can, in principle
attempted.~Actually, successful prediction may be the mo
stringent proof of the data’s deterministic origin.! The scalar
values of a series can be forecast either by selecting a m
based on the observed data@5#, or by expressing them as
function of the coordinates of points that are spatially clo
in embedding space, or by relating them to the time ser
values in the immediate past:

xt5 f ~xt21 ,xt22 ,...,xt2L!, L11<t<T, ~1!

whereL, the number of previous values that may appea
the equation, is a parameter that needs to be specified a
outset@6#.

This paper deals with the latter method: we attempt to fi
a formula, such as Eq.~1!, that links present and future va
ues of the series to their previous entries. Ideally, the form
is identical to the true data-generating process; at the lea
should mimic its behavior such that forecasts can be ma
The technique is global, in the sense that a single formul
sought that allows forecasts of future entries inany series
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generated by the process—starting atany point in time. Lo-
cal approximation schemes, on the other hand, deal only w
data that lie in a close neighborhood in embedding spa
and require separate computations for forecasts in diffe
regions. Obviously, a conventional search for the act
equation of the data generating process is hopeless, sinc
dynamics underlying most data, especially chaotic series,
far too complicated. Classical regression analysis is also
but useless. During the past decade various nonlinear t
niques have been developed to accomplish the task of f
casting. Chaos theory suggested the method of ‘‘nea
neighbors’’ @7,8# and of radial basis function predictor
@9,10#, artificial intelligence led to the use of neural ne
@11,12,13,14#, and recently wavelets@15,16# have been em-
ployed to predict chaotic time series. The nearest neigh
technique~which, again, requires massive amounts of da!
embeds the time series in a space of sufficiently high dim
sion, and then seeks vectors in the historical series that
similar to the one that is to be predicted. Neural nets also
a historical series, and the backpropagation of errors, to
tune a set of parameters, and thereby build a forecas
function that links past values of the time series with futu
values. Predictions based on radial basis functions use gl
interpolation techniques and have proven useful in prac
when only sparse data was available. Finally, wave
analysis—like the Fourier transform—decomposes a time
ries into its basic components, thus allowing insight into
fine structure, and then uses a weighted sum of these w
lets for forecasting purposes.

This paper proposes genetic algorithms, a technique
rowed from evolutionary biology, to accomplish the task.
usually requires only a few dozen data points to give depe
able results, and frequently offers the additional benefit
indicating the underlying process’ functional form. As w
use them here, genetic algorithms actually attempt to se
for a formula that determines the dynamic, i.e., for an eq
tion in symbolic form, which fits the data globally. But they
do this in a far more sophisticated way than by trying
exhaustively enumerate all possible equations. Another
proach to forecasting complex dynamics with genetic al
rithms has been reported@17#, and efforts have been made
combine the nearest neighbor technique with genetic a
rithms @18#, wavelets with neural nets@19#, or to merge the
three methods~nearest neighbors, neural networks, and
2557 © 1997 The American Physical Society
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2558 55GEORGE G. SZPIRO
netic algorithms! for prediction purposes@20#. There have
been some attempts to utilize such methods for investm
purposes@21,22#.

Genetic algorithms were pioneered by Holland@23#, and
have been used in such diverse areas as engineering@24#,
chemistry@25#, optimization@26#, acoustics@27#, pattern rec-
ognition @28#, and economics@29#, to mention just a few. A
formal analysis of genetic algorithms can be made, using
tools of mechanical statistics@30#. The closely related
method of evolutionary programming has been employed
elicit some basic physical laws from real-life data, for e
ample, Kepler’s third law and Ohm’s law@31#.

II. THE GENETIC ALGORITHM

The basic idea in this paper is to break up mathemat
equations into their building blocks, and to use these blo
in the same way that nature uses genetic material and c
mosomes to evolve ever fitter individuals. The Darwini
processes of natural selection and survival of the fittest t
to make suitable blocks of the equations combine with ot
useful blocks, while the useless parts eventually disappe

Let us assume a scalar time series$x1 ,x2 ,x3 ,...,xT%. We
want to determine the dependence of the valuesxt (L
11<t<T) on their previous valuesxt2l ~1<l<L, whereL
is the maximum lag that we allow!. The algorithm starts ou
with a population ofN initial ‘‘equation strings.’’ These are
sequences of randomly chosen symbols that conform
simple grammar of mathematical equations: two argume
are combined by an arithmetic operator, and the resul
expression is enclosed in parentheses. The arguments a
ther real numbers, or values from the time series, or
themselves self-contained expressions enclosed in a pa
parentheses. The resulting expressions, super-express
and compounded expressions form the building blocks of
equation strings on which the Darwinian processes oper
~In the remainder of the paper we will sometimes call su
equation-strings ‘‘agents.’’! Genetic algorithms consist of
few, quite simple routines, which are described, step by s
in what follows:

(a) Initialization. The agents of the populations are in
tially endowed with simple equation strings of the form

Sj5~~A^B! ^ ~C^D !!, 1< j<N ~2!

whereA, B, C, andD are either real numbers~i.e., param-
eters of the equations that we are looking for!, or variables
xt2l ~1<l<L!. In the following routines these variables wi
be identified with values in the time-series: for eacht ~L
11<t<T!, xt2l is a previous, or ‘‘lagged’’, value ofxt . ^

stands for one of the four arithmetic operators, addition, s
traction, multiplication, or division. At this stage the oper
tors and arguments are assigned at random: numerical va
are chosen from a finite set of real numbers, uniformly d
tributed in [2Z,1Z], and the integerl is uniformly distrib-
uted in 1<l<L. ~One of the algorithm’s parameters th
must be specified at the outset is the probability for the
gument to be a number, or a variable representing a prev
value of the time series.!

In order to avoid division by zero, or by very small num
bers, we use a ‘‘protected’’ division which is defined as t
division by Max~0.001,uBu!, while preserving the sign, i.e.
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A

Max~0.001,uBu!sgn~B!
. ~3!

Other mathematical constructs are conceivable, for insta
the log and exp functions~with one argument!, ‘‘if-then-
else’’ statements~with three arguments!, or Boolean opera-
tors. In this paper we limit ourselves to the four arithme
operators.

(b) Computing the fitness.We now define a criterion tha
measures how well the equation strings perform on the tr
ing set, $xL11,xL12,...,xT%. For each agentj the equation
string is used to compute estimates of allxt in the training
set, as a functions of the previous values of the time ser

xt
j5 f j~xt21 ,xt22 ,...,xt2L!, L11<t<T, 1< j<N ~4!

@x t
j denotes agentj ’s estimate, andf j ~ ! represents the equa

tion string of agentj #. The squared errors are summed f
each agent,

D j
25 (

t5L11

T

~xt
j2xt!

2. ~5!

The lower the sum of squared errors, the fitter is the ag
The percentage of the training set’s total variance tha
explained by the equation string, denoted by the symbolR j

2,

Rj
2512

D j
2

(
t5L11

T

~xt2 x̄!2

~6!

lends itself as an initial fitness measure.~x̄ represents the
mean of all xt in the training set.! However, in order to
discourage the genetic algorithm from overfitting, by cre
ing ever longer strings through the combination of more a
more parts of equations, we perform a modification to
value ofR2 in the following manner~we drop the subscriptj
henceforth!,

r 2512~12R2!
T2L21

T2L2k
, ~7!

whereT2L is the length of the training set, andk is the
number of variablesxt2l that appear in the string.~r

2 will be
called themodified R2.! This new fitness measure, which ca
be negative ifR j

2 is close to zero, confers an advantage
short strings.r 2 is inspired by, but not the same as, the a
justedR2, as is known from multiple linear regression: sin
multiple occurrences of the same variable are counted s
rately, compositions likext22xt23/xt24 increasek by 3, and
xt25/xt25 or xt242xt24 increasek by 2, even though in the
latter cases there are no new variables. We user 2 as the
fitness measure in the algorithm, but report the more fami
R2 value, which we will call the ‘‘explained variance.’’

(c) Ranking the agents.The agents are ranked in de
scending order of their fitness.

(d) Choice of mates.In this routine the members of th
population are organized into pairs. The fittest agent is
first to choose a mate. It makes its choice from among
remaining agents, the probability of any one of them beco
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55 2559FORECASTING CHAOTIC TIME SERIES WITH GENETIC ALGORITHMS
ing a partner being proportional to its fitness.~We do not
allow agents to mate with copies of themselves.! Then the
next fittest chooses, etc., untilN/2 agents have formed pairs
The remaining agents disappear. Thus, a total ofN/4 pairs
are formed.

(e) Reproduction and crossover.This routine is the hear
of the algorithm. Each of theN/4 pairs has four offspring
~Hence, the population size stays constant.! We choose the
following method of passing ‘‘genetic information’’ to th
next generation. The first two offspring are identical to th
parents. The equation strings of the two other offspring
formed as recombinations of their parents’ equation strin
randomly chosen, self-contained parts of the parents’ eq
tion strings~either a randomly chosen datum or real numb
or a randomly chosen opening parenthesis, and all the
tents of the equation string until the corresponding clos
parenthesis! are interchanged. For example, let us assume
parents’ equation strings are as follows:

Parent 1: ~A*B!/C,

Parent 2: ~D2~E/F !!, ~8!

whereA, B, C, D, E, andF are, again, either equal toxt2l

~1<l<L!, or to real numbers. The equation strings of o
spring 1 and offspring 2 are identical to their paren
Then—by crossover of the building blocksB and (E/F)—
the two other offspring’s equation strings could be of t
form

Offspring 3: ~A* ~E/F !!/C,

Offspring 4: ~D2B!. ~9!

~The operators are left untouched in this routine.! To sum-
marize, with the first two offspring, fitness is preserve
while provisions for improvement are made with the seco
pair of offspring.

(f) Mutation. A small percentage of the equation string
most basic elements, single operators and arguments
mutated at random. An element is randomly selected a
depending on whether it us a number, a variable, or an
erator, a new number, variable, or operator is chosen at
dom as in routine~a! above. The top ranked equation strin
are exempted from mutation, however, so that their inform
tion is not lost inadvertently. Mutation ensures that t
agents do not converge prematurely to a stable, but relati
low, level of fitness@32#. The number of mutations in eac
generation, and the percentage of strings that are exem
are parameters that have to be specified at the outset.

Parts~b!–~f! of the algorithm are rerun for a certain num
ber of generations, or until some stopping criterion is sa
fied, for example, when fitness no longer increases. T
editing operations are performed on the top-ranked equa
string, which cancel, concatenate, and simplify the variab
and numbers that appear in the equation string, and bre
down into a concise formula.

For our numerical experiments, the algorithm is imp
mented with the following parameter values: a populat
size of 400, a maximal string length, including parenthes
of 600~if equation strings become longer than that, the str
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is reinitialized, when they are shorter, the remaining slots
filled with null symbols!, and training sets with length 100
Whenever an operator needs to be chosen at random
initialization or at mutation—the probabilities of getting e
ther a number or a lagged datum, are 25% and 75%, res
tively. The maximal lag,L, is 10, and numbers are uniforml
distributed in [2Z,1Z], with Z510 and a precision of one
decimal. In each generation 240 mutations occur. The t
ranked 10% of the population are exempted from mutati
~Multiple mutations can occur in the same equation stri
On average, two-thirds of the 360 lower-ranked agents
dergo one mutation in each generation.! In general, we let
the algorithm continue for 200 generations, but for hig
dimensional and for noisy series up to 1200 generations w
run.

Other evolutionary schemes are, of course, also poss
For example, the procedure for the choice of a mate, or
method of passing ‘‘genetic information’’ from one gener
tion to the next may be varied, and obviously the numeri
values of the parameters can be changed as well. Or,
example, one could envisage, say, formingN/6 pairs in each
generation, with 6 offspring each. It is interesting to no
though, that the algorithm is quite robust to such chang
The most efficient algorithm is found through experimen
tion.

III. REFINEMENTS AND IMPROVEMENTS

The genetic algorithm proposed in this paper searches
equations that mimic the dynamic that underlies a time
ries. However, the equation string that is the top scorer a
many generations is not necessarily a well-adapted ag
even if the explained variance is good: over-fitting may p
duce misleadingly highR2. To ascertain that the genetic a
gorithm bred an equation string that is fit—in a meaning
sense of the word—the top-ranked equation must always
applied to a test set and its predictive power must be
checked with these new data.

It should be noted that the genetic algorithm does
necessarily find the simplest version of an expression.
instance, the number 1.0 could be stated asxt25/xt25, zero
as xt242xt24, 2xt23 as xt23(xt251xt25)/xt25, etc. Also,
equations need not be expressed in terms of the most re
lags, they could be recursively defined in terms of previo
lags.

After the genetic algorithm has evolved an equati
string, the result can sometimes be enhanced by applying
method to the series of residuals. The latter is defined as
series of values«t that remain after the results of the fitte
equation string have been deducted from the original ser

« t5xt2 f * ~xt21 ,xt22 ,...,xt2L!, L11<t<T, ~10!

where f * ~ ! is the top-scoring equation string at the end
the algorithm’s run. If some parts of the data-generating f
mula dominate the other parts, an improvement of the re
may be brought about by running the algorithm with the n
time series$«L11,«L12,...,«T% @33#.

In the numerical experiments described below, we fi
breed formulas that give forecasts ofxt as functions of the
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2560 55GEORGE G. SZPIRO
immediately precedingxt2l ~L11<t<T and 1<l<L!. To
express values in the time series that are further ahead in
future, the formulas could be iterated,

xt1n5 f * + f * +•••+ f * ~xt21 ,xt22 ,...,xt2L!, n>1. ~11!

But one cannot expect very good results: in the examp
that follow in the next section we use chaotic process
whose sensitive dependence on initial conditions is w
known. Hence, even a slight error in the forecasts ofxt will
lead to rapidly increasing errors in the forecasts ofxt1n if the
latter are computed according to Eq.~11!. However, by sim-
ply modifying one parameter, genetic algorithms can be
rected to specifically breedn-period forecasts: if the intege
l is required to be uniformly distributed in [n,K] instead of
@1,L# in the initialization and mutation stages of the alg
rithm, the strings that givex t

j @Eq. ~4!# will be expressed
specifically in terms ofxt2l , with n<l<K. Thus the new
equation string allows the forecast ofxt in period t-n. The
fitness for n-period forecasts is generally lower than f
1-period forecasts, but it is usually better than when Eq.~11!
is applied recursivelyn times.

Finally let it be noted that the genetic algorithm describ
here can be modified to handle vector time seri
$^x1 ,y1 ,...,z1&,^x2 ,y2 ,...,z2&,... ,̂ xT ,yT ,...,zT&%. By let-
ting the algorithm choose the lagged variables in the init
ization and the mutation routines not only from among
xt2l , but also fromyt2l ,...,zt2l , strings will be bred that
expressxt as a function ofxt2l , yt2l ,...,zt2l ~1<l<L!.

IV. NUMERICAL EVIDENCE

We apply the genetic algorithm to clean and to noisy da
and to a series of sunspot data. In the numerical experim
we use chaotic time series whose future values are no
ple
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ously difficult to predict from historical data. In Sec. V w
compare our results to those obtained in other studies.

(a) Rössler attractor (without noise).We simulate the
Rössler attractor@34# as

x~ t1d!5x~ t !2@y~ t !1z~ t !#d,

y~ t1d!5y~ t !1@x~ t !1ay~ t !#d,

z~ t1d!5z~ t !1@b1x~ t !z~ t !2cz~ t !#d, ~12!

with a50.2, b50.2, c55.7, initial valuesx0521, y050,
z050, andd50.02. The results of this equation system f
integer values oft ~i.e., for every 50th step! form the time
seriesxt , yt , andzt . We first apply the genetic algorithm t
the time series of thex variable. After 200 generations of
typical run, the top-ranked equation string was@35#

A05~~~~~~~~0.41~A61A8 !!* ~~~~~A3

2A2 !* ~A3* 4.5!!/4.4!1A3 !/4.5!!/8.4!2A3 !

1A1 !* ~A5/4.5!!/4.4!2A3 !

with anR2 of 0.878. In edited form, this equation is

xt52xt2310.0505051xt25~xt212xt23!

10.00136647xt23xt25~0.9777752xt221xt23!

3~0.41xt261xt28!. ~13!

In order to test the string’s predictive power, a new tim
series was created with different data. Figure 1 shows h
the equation performs on a set with new data. TheR2 of
these forecasts is 0.912.

For the time series of thez variable we got the following
equation after 200 generations, for example,
zt5
1.2zt21

2

~104.3041zt21!~0.4zt21
3 zt22

2 1zt22zt23zt210!@1.8149.104zt23127.28zt23~zt211zt24!#
, ~14!
his
on

ut
he

-
-
-
g
ut,
with explained variance of 91.6%. This particular exam
shows, however, how a genetic algorithm can get somew
thrown off the mark. A test with a new data set results in
R2 of only 0.568 for fifty data points. The reason is th
following: since more than 90% of the values of thez series
are contained in the interval@0, 1.0#, while less than 10% of
the data lie in@1.0, 15.0#, the genetic algorithm is fooled. B
getting the outliers approximately right, and setting all oth
values close to zero, it performs quite well in terms ofR2.
~The results are depicted in Fig. 2 and, in more detail, in F
3.! Hence, depending on what the aim of the exercise is,
fitness measure may need to be adjusted. If the goal i
predict the occurrence of outliers, then it is correct to use
genetic algorithm in the above manner. If, on the other ha
the aim is to get as many data points as close to their
values as possible, then it would be worthwhile to specif
at
n

r

.
e
to
e
d,
e
a

cap on the maximum value for the error for each datum. T
reduces the weight of the outliers, putting the emphasis
the mainstream data.

(b) Mackey-Glass delay differential equation (witho
noise). The dimension of the time series produced by t
Mackey-Glass process@36#

dxt
dt

5
axt2t

11xt2t
c 2bxt ~15!

~with a50.2, b50.1, andc510! depends on the delay pa
rametert. We will uset530, which corresponds to a dimen
sion of about 3.5, andt5100, which corresponds to a dimen
sion of about 7.5.~The series was created by subdividin
every time unit into ten subunits, letting transients die o
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FIG. 1. Rössler attractor~x values!.
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and then observing every tenth subunit.! For t530 we
obtain—after not more than a couple of generations
equation strings of the form

A05~~A6*A1 !/A6 !

or

A05~~A1*A3 !/A4 !,

with R2 values of 0.990 and 0.997, respectively. Since
series is very highly autocorrelated, excellent one-per
forecasts are not surprising@37#, and it will be more instruc-
tive to inspect longer-term predictions. We breed 40-per
forecasts, as explained at the end of Sec. III, by setting
first lag equal to 40. One such run gave the equation

A05~A402~~A40*A40!20.8!!,

with 0.631 explained variance, another resulted in

A05~0.82~~A40*A44!2~A461~A452A49!!!!,

with R2 of 0.642. Using these equations and new data s
40-period forecasts typically producedR2 values of between
0.400 and 0.650 in both cases.~Some test-series did hav
much lowerR2 values, however.!

Let us now turn to a series of higher dimension by sett
the parametert in Eq. ~12! equal to 100. One-period predic
e
d

d
e

ts,

g

tions are again trivial and will not be listed here. We inve
tigate 10-period forecasts. With high-dimensional data
algorithm must be rerun with longer training periods, and
now use training periods of length 500 to breed equat
strings and produce forecasts. Because of the high auto
relation of the Mackey-Glass time series, one could jus
‘‘naive’’ forecasts of the formxt1105xt and, in effect, the
equation string A05A10 usually results in explained vari
ances of up to 0.500. However, genetic algorithms perfo
significantly better. Three examples are

A05~A101~~A172A15!2~A132A10!!!,

A05~A171~~A1226.1!* ~A122A10!!!,

A05~~A15* ~A191~A102~6.4* ~A13

2A10/~~A10*A19!1A10!,

with R2 of 0.705, 0.770, and 0.776, respectively. Applyin
these equation strings to different realizations of the Mack
Glass time series witht5100, we typically getR2 values of
between 0.450 and 0.800.

(c) Belousov-Zhabotinskii simulation (with noise).Now
let us use a simulation of the behavior of the Belouso
Zhabotinskii reaction in chemistry, with noise added@38#,
xt5H 2~0.1252xt21!
1/310.50607357 exp~2xt21!1« for xt21<0.125

~xt2120.125!1/310.50607357 exp~2xt21!1« for 0.125,xt21<0.3

0.121205692F10xt21 expS 2
10

3
xt21D G191« for xt21.0.3.

~16!
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FIG. 2. Rössler attractor~z values!.

FIG. 3. Detail of Fig. 2.



00

55 2563FORECASTING CHAOTIC TIME SERIES WITH GENETIC ALGORITHMS
The noise term« is uniformly distributed in@0, 0.05#. As before, our training period consists of 100 data points. After 2
generations of one typical run the edited version of the top-ranked equation string had the form

xt5
3.1xt21146.98xt21

2

2.3187.74xt21
4 xt22~3.11xt221xt241xt2512847.71630~xt21

4 1xt21
3 xt24!12284.14727~xt21

5 1xt21
4 xt24!!

. ~17!

FIG. 4. B-Z series with noise.
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The explained variance for the training set is 0.923. In or
to test the predictive power of this equation, we apply it to
new data set. Starting with a completely new series of
form ~16! we use Eq.~17! to estimate fifty one-period
forward predictions. The fit between the predicted values
the series is very good: in the example presented in Fig. 4R2

equals 0.933. Furthermore, it is especially interesting to n
that the genetically evolved equation predicted the peaks
rectly, in every instance, whether they occurred after f
periods ~t55, 21, and 28!, or after three periods. Two
dimensional phase portraits of the simulated Belous
Zhabotinskii reaction, according to Eq.~16!, and of the re-
construction bred by the algorithm@Eq. ~17!# are depicted in
Fig. 5. The similarity between the two is apparent.

(d) Hénon attractor (with noise).As another example, le
us investigate the He´non attractor@39#, with noise added.
The time series that we examine have either dynamic n
d,

xt5121.4xt21
2 10.3xt221d, ~18!

or measurement noisem,
r
a
e

d

te
r-
r

-

se

yt5121.4yt21
2 10.3yt22 ,

xt5yt1m. ~19!

Convergence to well-adapted~fit! equation strings was sig
nificantly slower for the noisy time series, and in the follow
ing examples, the runs included up to 1200 generations. D
requirements were not increased, however, and the trai
period was held constant at 100 data points. For a He´non
attractor, with dynamic noised distributed as a normal, with
mean 0, and standard deviation 0.05~truncated at 0.01, so
that the time series does not always explode!, we received,
for example,

A05~~1.52~A1*A1 !!/2.0!,

A05~~0.22~~A1* 0.4!* A1 !!* 4.0!,

A05~0.82~A1*A1 !!.

The explained variances for the training sets were 0.4
0.620, and 0.839, respectively. The structure of these eq
tion strings shows distinct similarity to the structure of t
clean dynamic that generated the time-series—in fact t
represent the logistic equation, which can be considered
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FIG. 5. B-Z series with noise, phase portraits. Top: simulation@Eq. ~16!#; bottom: forecasts@Eq. ~17!#.
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one-dimensional version of the He´non process—and theR2

values for new data sets were the same as for the trai
sets.~The series that exploded were excluded@40#.! For d
uniformly distributed in@0, 0.1# we received similar results

Turning to measurement noise, we investigated time
ries, whose noise termm is normally distributed with stan
dard deviation 0.20. As can be seen from Fig. 6~top!, the
structure of the dynamic is hardly recognizable with th
amount of noise. Nevertheless, after 500 generations one
of the genetic algorithm produced the equation string

A05~~~~1.42A3 !1~~A72~A32A8 !!

2~~A11A1 !* A1 !!!1A2 !/4.5!,

with R250.443. In tests with new data sets, the explain
variance of this equation string was typically between 0.2
and 0.450, which is surprisingly good, considering t
amount of noise present. The edited version of this strin

xt50.31120.444xt21
2 10.222xt22

10.222~22xt231xt271xt28!, ~20!

and some similarity to the ‘‘true’’ dynamic is apparent. Fi
ure 6 ~bottom! plots forecasts against actual values, and
correlation between them is evident—even if it is much le
than perfect.
ng

e-

t
un

d
0
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s

(e) Sunspots.As a final example we apply the genet
algorithm to a time series whose underlying dynamic is
yet unknown, the series of sunspots from 1700 until 1992
registered in the Sunspot Index Data Center@41#. We divide
the series into a training set, which runs from 1700 to 18
to which the algorithm is applied, and a test set~1900 to
1992!, which represents the test series. After only abou
dozen generations the algorithm settles down to an equa
string like A5*A1/A5 or similar, with R2 of 0.621. This,
again, is not surprising, because of the high degree of a
correlation in the series. As mentioned in Sec. III, we c
refine the results. Since we know thatxt5 f (xt21)1« t , we
determine the best linear fit, by minimizing the sum
squared residuals,S« t

2, and receive

xt57.776210.8205xt211« t , ~21!

with R2 of 0.673. Now we take the series of residuals,«t ,
and let the algorithm breed equations in terms ofxt2l , with
lags 1<l<20. ~Hence the training set actually consists of t
years 1720 to 1900, the first 20 observations being use
lags for the beginning of the series.! Five separate runs re
sulted in the following equation strings after about 200 ge
erations:
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FIG. 6. Hénon attractor with measurement noise. Top: phase portrait; bottom: actual values vs forecasts.
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A05~~A92A3!/~~A9/~4.0*A1!!14.0!!,

A05~~~A92A3!*A1!/~A131~~A91A2!1~9.41A2!!!!,

A05~~A92A3!/~4.81~A9/~9.5*A1!!!!,

A05~~A92A3!/~3.91~A11/A1!!!,

A05~~A92A3!/~~A13/A1!13.9!!,

with R2 of 0.468, 0.538, 0.440, 0.462, and 0.457, resp
 -

tively. TheseR2 values refer to the variance that remain
after the algorithm in the first stage already helped expl
67.3% of the total variance. Hence, the combination of b
stages explains between 0.814 and 0.849 of the training
ries’ variance, e.g.,

0.67310.538~120.673!50.849. ~22!

It is particularly interesting to note that the edited versions
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FIG. 7. Sunspots.
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theses strings are very similar, with the express
xt21(xt292xt23) appearing in every single case:

« t5
xt21~xt292xt23!

4xt211
1
4xt29

, « t5
xt21~xt292xt23!

9.412xt221xt291xt213

« t5
xt21~xt292xt23!

4.8xt211
1

9.5
xt29

, « t5
xt21~xt292xt23!

3.9xt211xt211
,

« t5
xt21~xt292xt23!

3.9xt211xt213
. ~23!

Applying the combined results of both stages,

xt57.77621xt21S 0.82051 ~xt292xt23!

Q D , ~24!

to the series, 1900 to 1992, whereQ designates any one o
the divisors on the right-hand sides of Eqs.~23!, we obtain
R2 values of between 0.851 and 0.872. Figure 7 plots
series and the forecasts for one of Eq.~23! @42#.

V. DISCUSSION

In order to assess the ability to forecast time series,
Mackey-Glass differential equation, witht530, and the se-
ries of sunspots during the past three centuries are often
n

e

e

m-

ployed as benchmarks to test for the quality of differe
methods. The normalized, root-mean-square errorE, which
relates to ourR2 as

E5A12R2, ~25!

is frequently used as a measure for the goodness of
Farmer and Sidorovich@7# applied the nearest-neighbor tec
nique, to forecast 40 periods in the future. Using 100 d
points they reportedE;1.0, which corresponds to anR2

value of approximately zero. When the training set was
creased to 5000 observations, the nearest-neighbor techn
allowed 40-period forecasts withR2 values of 0.990. La-
pedes and Farber’s@11# neural networks, using 500 observ
tions for training purposes, produced one-period foreca
with goodness of fit of 0.999. The wavelet method repor
in Caoet al. @43# also gave one-step-ahead predictions, us
300 observations as a training set. In their study the rela
errors were reported, and even though it is difficult to qua
tify the results~given in their Fig. 2!, it seems that while the
vast majority of forecast errors is smaller than 0.025, a s
able amount is found between 0.025 and 0.05, and a sig
cant number is much larger, some being as high as 0.2
Finally, Meyer and Packard’s@17# genetic algorithm allows
400-period forecasts, but only for those observations of
time series that are located in a very limited part of a sev
dimensional embedding space.

Let us recall that, using training sets with a length of on
100 data points, our genetic algorithm was able to prod
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55 2567FORECASTING CHAOTIC TIME SERIES WITH GENETIC ALGORITHMS
one-period forecasts with a goodness of fit of at least 0.9
and forty-period forecasts withR2 values of between 0.400
and 0.650. About 72% of the absolute errors were sma
than 0.025, another 22% were between 0.025 and 0.05,
even the largest errors were less than 0.130.

Turning to sunspots for the years 1921 to 1955, a re
culation of Subba Rao’s@44# results gave anR2 value of
0.926, while Weigendet al. @45# predict this part of the se
ries with an accuracy of 0.914. This compares with an
plained variance of 0.895 of the genetic algorithm. For
years 1956 to 1979, Weigendet al. receivedR2 of 0.650,
while our genetic algorithm gave 0.826.

In conclusion, it appears that forecasts produced by
genetic algorithm are at least comparable, if not superior
some of the other techniques. Moreover, the method has
advantages of giving global estimates, and sometimes i
cating the structure of the underlying dynamic. Finally,
may be possible to use genetic algorithms as an alterna
method to distinguish chaotic time series from random d

VI. CONCLUDING REMARKS

It may seem nothing less than surprising that an algorit
that performs unmotivated operations on an arbitrary cho
of short equations, with a meager choice of parameter val
should produce formulas that recreate, or at least mimic,
dynamics of a process that underlies a data set. While
lack of a goal, and of an appropriate justification for the p
e

T

E

or

ell

xi

ce
0,

r
nd

l-

-
e

ur
to
he
i-

ve
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e
s,
e
he
h

by which this goal is reached, may seem a theoretical we
ness, it actually points to the essence of evolution. Startin
preambrian times cells, plants, animals, apes and, finally,
mankind evolved from a very meager soup of initial buildin
blocks in such an unmotivated manner. With successive g
erations nature evolved individuals that were better and
ter adapted to their environment, without any motivati
force. No goal, objective, purpose, or sense of direction w
required. Genetic algorithms emulate nature’s process,
their significance lies precisely in the fact that a black-b
method like the one described in this paper produces s
cessful predictions.

The fact that the formulas bred by the genetic algorith
may be very intricate—their complication sometimes e
ceeding that of the original system—does not spoil the ar
ment. Evolution has to make do with the semifinished, int
mediate products that are available at any given point
time, without regard to elegance of design or engineeri
For example, it is by no means certain that, say, the hum
eye is the simplest mechanism that allows vision. Natur
and genetic algorithms’ sole aim—if it can be called that—
to evolve systems that are well adapted to the current e
ronment.
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